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General Problem:

Let K be a simplicial complex and r > 2.
Does there exist a continuous map f : K — R? without r-fold
Intersections?

A point p € R? is an r-fold intersection if there exit
ri,...,o, € | K| distinct such that

p:fﬂflz”':fﬂi'r

K Awa f(K)

A map f: K — R? without r-fold intersection is called
r-embedding
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Example: f: K — R’

K = real projective plane R P

(unique) 3-fold intersection

2-fold intersection
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Boy's Surface

f: RP? — R% is a 4-embedding (no 4-fold intersections)



Classical Case: Maps without 2-fold
intersections



Classical Case: Maps without 2-fold
intersections

Goal: Find f: K — R continuous & injective (i.e.,f is an
embedding)



Classical Case: Maps without 2-fold
intersections

Goal: Find f: K — R continuous & injective (i.e.,f is an
embedding)

Theorem (van Kampen—Shapiro-Wu):
Jf: K™ < R & 3f: K% =g, S*m1

provided m # 2.



Classical Case: Maps without 2-fold
intersections

Goal: Find f: K — R continuous & injective (i.e.,f is an
embedding)

Theorem (van Kampen—Shapiro-Wu):
Jf: K™ < R & 3f: K% =g, S*m1
provided m # 2.

‘easy’ Proposition The existence of K° —g, S ! is
algorithmically solvable.



Classical Case: Maps without 2-fold
intersections

Goal: Find f: K — R continuous & injective (i.e.,f is an
embedding)

Theorem (van Kampen—Shapiro-Wu):
Jf: K™ < R & 3f: K% =g, S*m1

provided m # 2.

‘easy’ Proposition The existence of K° —g, S ! is
algorithmically solvable.

Corollary. The existence of an embedding K™ < R?™ s
algorithmically solvable, provided m # 2.
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What about maps without r-fold intersections?

Goal: Find f: K — R? continuous &
without r-fold intersection
(i.e.,f is an r-embedding)

An necessary condition
for the existence of f:

1) Define the r-fold deleted product of K:

K" :={o1x---xXo,|o;€ Kando;,No; =0} C K*"
2) Given an m-embedding f: K — RY, define

~

f: Kg“n — RAXT
—

($1,.--,ZC7~) (fxla'“afxr)
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Two properties of f

f: K" — RIxT
($1,...,33r) — (fCIZ‘l,...,fCET)

A) The symmetric group &, acts on both K" and R%*" by
permutation of the coordinates

~

f is compatible with both actions (i.e., f is &,-equivariant):
For all p € G,

~ ~

fop=pof
B) (x; € 0, € K and 0; N o; =) = all the z; are distinct
f is an r-embedding = —(fx1 =--- = fx,)

Hence:

~

fr K —e, [R>*"\{(z,...,2) | + € R4}~ §r—1)d-1
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Theorem:

Jf: K=k _ R almost r-embedding
N <~
E'f: K§<’P %(‘5,“ S(T—l)rk—l

provided £ > 3.

geometric problem - algebraic problem
(map without intersection) (equivariant map)

easy Proposition The existence of K" —g, S(" k=1 s
algorithmically solvable.

Corollary. The existence of f: K("=Dk — R™" almost
r-embedding is algorithmically solvable, provided k > 3.
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Our Main Tool:
an r-fold analogue of the Whitney Trick

Classical Whitney Trick with two balls o and 79 In
[RP+4-
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What happens with more than two balls?

Problem: coN7and o Npu
are, in general, not
connected spaces

olnT 6
=T
s

+1 oilp

Then, use that ¢° is “flat”
(codimension > 3) to extend
the solution to R?.
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Piping 4+ Unpiping Trick

1-handle

7P + the two handles & a p-ball
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Back to the intersection problem

1-handleon o N1

/

_ S
g —

Hence, we can add 1-handles on o N 7.
|.e., we can make o N 7 connected.



3-told Whitney Trick

— 1'y ............. o y%g o
41 >
/ T ):z: 1

We can assume o N7 and o M u are connected.
Hence we can use the classical Whitney trick to solve the
3-balls situation, i.e., to remove triple intersection points.




r-fold Whitney Trick

Given 7 balls By, -+ , B, mapped by a f into R? in general
position

with L

d—dim(B;) >3 and » d- dim(B;)

It
f(By)N---Nf(Br) ={z,y}

two points of opposite signs. Then we can remove these two
points by a move along a 2-dimensional cone (= "“Whitney
disk™ ).

In particular, we can avoid any codimension > 3 object in R¢
during this move.
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classical Whitney Trick = first part of Van Kampen
Embeddability (k£ # 2):

K% 5 R2%k 3lmost 2-embeds
N
K§<2 %62 SQk—l

r-fold Whitney Trick = For r,k > 3,

K=k s R"" 3lmost r-embeds
e
K5><'r %GT Sr(r—l)k—l

N
check a system of linear equations over Z
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01

A3 f

RQ
forN foa #10
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The conjecture holds for r = primeP°"¢" (Ozaydin87)
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Topological Tverberg Conjecture: Given r,d > 2, there
exists no almost r-embedding

Ar=1)(d+1) _ pd

(Ozaydin 1987) (A1§0105);<6 — s, 5%

(M-Wagner)

6
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Application: Topological Tverberg

Topological Tverberg Conjecture: Given r,d > 2, there
exists no almost r-embedding

A(r—l)(d+1) N Rd.
X 6

(Ozaydin 1987) (A1§0105)5 — s, 5%
(M-Wagner)
(Algol%);6 —e, 5% = AL — R'™ almost 6-embeds

(Gromov 2010, Blagojevic-Frick-Ziegler 2014)
AP — R' almost 6-embeds

— A100 _y R19 3lmost 6-embeds.

Frick’'s observation: there exists an almost
(0) + (MW) + (G) = 6-embedding A0 — R
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Theorem (Avvakumov-M-Skopenkov-Wagner). For d > 2r
and r not a prime power, there exists an almost r-embedding

A(d+1)(r=1) _, pd
Minimal counterexample: almost 6-embedding A% — R12.

What happens for d < 117

First open case of the conjecture: almost 6-embedding
A — R?. l.e., a drawing of Kjg without

15
1 16 14

9
3 o ‘4 12
4 11
or
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How the minimal counterexample A% — R!“
was obtained?

Two new tools:

1) Prismatic maps (forcing codimension)

All the Tverberg partitions are

| made of triangles
AS — | C RS

2) A codimension 2 (1) Whitney Trick

(Avvakumov-M-Skopenkov-Wagner) Provided k£ > 2 and » > 3:
JK "=k 5 R almost r-embedding < K" =g, G(r—1)rk—1
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Frick's counterexample A% — R

19=06-04+1
Ozaydin M_Wagner Gromov trick,
(smallest r-fold Whitney Constraint

non-prime power)  Trick method (BFZ)



M-Wagner prismatic counterexample A% — R18

I8=06-95+

I

Ozaydin M-Wagner

(smallest r-fold Whitney
non-prime power)  Trick



Avvakumov-M-Skopenkov-Wagner prismatic codim 2
counterexample A% — R1“

12=06-2-+
Ozaydin codim 2
(smallest rfold Whitney

non-prime power)  Trick



Avvakumov-M-Skopenkov-Wagner prismatic codim 2
counterexample A% — R1“

12=06-2-+
Ozaydin codim 2
(smallest rfold Whitney

non-prime power)  Trick

What happens in lower dimension (2 < d < 11) remains a
mystery...
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The van-Kampen-Shaprio-Wu theorem was vastly extended in
the 60s

Theorem (Haefliger-Weber 60's):
3. K™ R4 & 3f: K§<2 —g, 9971

provided 2d > 3m + 3 (=metastable range)

Theorem (Cadek-Krcal-Vokrinek 13) The existence of
K[ ? =&, S9! is algorithmically solvable.

Corollary. The existence of an embedding K™ — R is
algorithmically solvable, provided d =~ 1.5m
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df: K™ — R4 almost r-embedding < Hf: Kg“" =6, q(r—1)d—1

provided rd > (r 4+ 1)m + 3 (= r-metastable range).

Theorem (Filakovksy-Vokrinek). The existence of
K" —g, Sr=Yd=1 s algorithmically solvable.

Corollary. The existence of f: K™ — R? almost r-embedding
is algorithmically solvable, provided d > %m

THANK YOU!!




