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General Problem:

Let K be a simplicial complex and r ≥ 2.
Does there exist a continuous map f : K → Rd without r-fold
intersections?

A point p ∈ Rd is an r-fold intersection if there exit
x1, ..., xr ∈ |K| distinct such that

p = fx1 = · · · = fxr

A map f : K → Rd without r-fold intersection is called
r-embedding

K f(K)f−→
x1

x2
p
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Example: f : K2 → R3

K = real projective plane RP 2

RP 2

Boy’s Surface

f−→

2-fold intersection

(unique) 3-fold intersection

f : RP 2 → R3 is a 4-embedding (no 4-fold intersections)
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Classical Case: Maps without 2-fold
intersections

Goal: Find f : K → Rd continuous & injective (i.e.,f is an
embedding)

Theorem (van Kampen–Shapiro–Wu):

∃f : Km ↪→ R2m ⇔ ∃f̃ : K×2
δ →S2

S2m−1

provided m 6= 2.

‘easy’ Proposition The existence of K×2
δ →S2 S

2m−1 is
algorithmically solvable.

Corollary. The existence of an embedding Km ↪→ R2m is
algorithmically solvable, provided m 6= 2.
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What about maps without r-fold intersections?
Goal: Find f : K → Rd continuous &
without r-fold intersection
(i.e.,f is an r-embedding)

An necessary condition
for the existence of f :

1) Define the r-fold deleted product of K:

K×r
δ := {σ1 × · · · × σr | σi ∈ K and σi ∩ σj = ∅} ⊂ K×r

2) Given an r-embedding f : K → Rd, define

f̃ : K×r
δ → Rd×r

(x1, . . . , xr) 7→ (fx1, . . . , fxr)

r = 3

f(K) ⊂ R3
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fσ1 ∩ · · · ∩ fσr = ∅

⇓

∃f̃ : K×r
δ →Sr S

(r−1)d−1

⇑

provided m = (r − 1)k, d = rk

and k ≥ 3

f is an almost r-embedding

yes!



Theorem:

provided k ≥ 3.

∃f : K(r−1)k → Rrk almost r-embedding
⇔

∃f̃ : K×r
δ →Sr S

(r−1)rk−1



Theorem:

provided k ≥ 3.

geometric problem algebraic problem⇔
(map without intersection) (equivariant map)

∃f : K(r−1)k → Rrk almost r-embedding
⇔

∃f̃ : K×r
δ →Sr S

(r−1)rk−1



Theorem:

provided k ≥ 3.

geometric problem algebraic problem⇔
(map without intersection) (equivariant map)

easy Proposition The existence of K×r
δ →Sr S

(r−1)rk−1 is
algorithmically solvable.

∃f : K(r−1)k → Rrk almost r-embedding
⇔

∃f̃ : K×r
δ →Sr S

(r−1)rk−1



Theorem:

provided k ≥ 3.

geometric problem algebraic problem⇔
(map without intersection) (equivariant map)

easy Proposition The existence of K×r
δ →Sr S

(r−1)rk−1 is
algorithmically solvable.

Corollary. The existence of f : K(r−1)k → Rrk almost
r-embedding is algorithmically solvable, provided k ≥ 3.

∃f : K(r−1)k → Rrk almost r-embedding
⇔

∃f̃ : K×r
δ →Sr S

(r−1)rk−1
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Our Main Tool:
an r-fold analogue of the Whitney Trick

Classical Whitney Trick with two balls σp and τ q in
Rp+q:

σp

τ q

p, q ≥ 3

Rp+q
Whitney Disk D2

x
+1

y−1

push σp along the Whitney Disk

σ̃p
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What happens with more than two balls?

x

y

+1

−1 σ6

R9

σ ∩ µ

σ ∩ τ

σ̃ ∩ µ

Whitney trick for two balls

Then, use that σ6 is “flat”
(codimension ≥ 3) to extend
the solution to R9.

Problem: σ ∩ τ and σ ∩ µ
are, in general, not
connected spaces

x y
+1 −1σ

σ ∩ τ

σ ∩ µ
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Piping + Unpiping Trick

τp

Rp+3

1-handle

2-handle

∼=

τp + the two handles ∼= a p-ball
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1-handle

complementary 2-handle

σ

τ



Back to the intersection problem

1-handle on σ ∩ τ

Hence, we can add 1-handles on σ ∩ τ .
I.e., we can make σ ∩ τ connected.

1-handle

σ



3-fold Whitney Trick

τ

µ

σ

x

y+1
−1 y

x

σ ∩ τ

σ ∩ µ

σ

We can assume σ ∩ τ and σ ∩ µ are connected.
Hence we can use the classical Whitney trick to solve the
3-balls situation, i.e., to remove triple intersection points.



r-fold Whitney Trick

Given r balls B1, · · · , Br mapped by a f into Rd in general
position

f : B1 t · · · tBr → Rd

with

d− dim(Bi) ≥ 3 and
∑
i

d− dim(Bi) = d.

If
f(B1) ∩ · · · ∩ f(Br) = {x, y}

two points of opposite signs. Then we can remove these two
points by a move along a 2-dimensional cone (≈“Whitney
disk”).
In particular, we can avoid any codimension ≥ 3 object in Rd
during this move.
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classical Whitney Trick ⇒ first part of Van Kampen
Embeddability (k 6= 2):

Kk → R2k almost 2-embeds
⇔

K×2
δ →S2

S2k−1

r-fold Whitney Trick ⇒ For r, k ≥ 3,

K(r−1)k → Rrk almost r-embeds
⇔

K×r
δ →Sr

Sr(r−1)k−1

⇔
check a system of linear equations over Z
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Theorem (Avvakumov-M-Skopenkov-Wagner). For d ≥ 2r
and r not a prime power, there exists an almost r-embedding

∆(d+1)(r−1) → Rd

Minimal counterexample: almost 6-embedding ∆65 → R12.

What happens for d ≤ 11?

First open case of the conjecture: almost 6-embedding
∆15 → R2. I.e., a drawing of K16 without

1
2

3

4

5

6 7 8 9
10

11
12

13
14

1516 1
2

3
4
5

6
7 8 9 10

11

12

13
14

15

16
or



How the minimal counterexample ∆65 → R12

was obtained?

Two new tools:



How the minimal counterexample ∆65 → R12

was obtained?

Two new tools:

1) Prismatic maps (forcing codimension)

∆8 → ⊂ R3

All the Tverberg partitions are
made of triangles



How the minimal counterexample ∆65 → R12

was obtained?

Two new tools:

1) Prismatic maps (forcing codimension)

∆8 → ⊂ R3

All the Tverberg partitions are
made of triangles

2) A codimension 2 (!) Whitney Trick

(Avvakumov-M-Skopenkov-Wagner) Provided k ≥ 2 and r ≥ 3:
∃K(r−1)k → Rrk almost r-embedding ⇔ K×r

δ →Sr S
(r−1)rk−1
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Frick’s counterexample ∆100 → R19

19 = 6 · 3 + 1

Ozaydin
(smallest
non-prime power)

Gromov trick,
Constraint
method (BFZ)

M-Wagner
r-fold Whitney
Trick
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M-Wagner prismatic counterexample ∆95 → R18

M-Wagner
r-fold Whitney
Trick
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codim 2
r-fold Whitney
Trick

Ozaydin
(smallest
non-prime power)

prismatic maps

12 = 6 · 2 + 0

Avvakumov-M-Skopenkov-Wagner prismatic codim 2
counterexample ∆65 → R12

What happens in lower dimension (2 ≤ d ≤ 11) remains a
mystery...
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